# Mechanical Arm Series 

## Joint Robot - Basic Operation and Program Manual

2018/12 Ver : V09.00

Leading Numerical Controller

## 1. Content

1. Content .....  2
2. Instructions of handheld box and screen configuration .....  6
2.1. Shape of handheld box .....  6
2.2. Instructions for screen configuration .....  7
2.3. Title Bar ..... 8
2.4. Right quick-operating area .....  9
2.5. Left function menu ..... 10
3. Common pages ..... 11
3.1. Startup ..... 11
3.2. Permissions ..... 12
3.3. Coordinates ..... 13
3.3.1 Coordinate system and settings ..... 13
3.3.2. Current coordinates display ..... 14
3.3.3. Operation for motions ..... 15
3.4. IO ..... 16
3.5. Alarm warning page ..... 17
4. Introduction to basic concepts ..... 18
4.1. Introduction to space coordinates (position and attitude). ..... 18
4.2. Various coordinates and their relevance ..... 20
4.3. Fast moving ..... 21
4.4. Path motions ..... 21
5. Maintenance and teaching mode ..... 24
5.1. Button names ..... 24
5.2. Mode description ..... 24
5.3. Differences between handwheel and non-handwheel modes ..... 25
5.4. Coordinate system selection during motions ..... 26
5.5. Direction rotation in teaching mode ..... 27
6. Tools ..... 28
7. Point record ..... 30
8. Security point ..... 31
9. Coordinate system ..... 32
10. Introduction to operation interface of program page ..... 34
10.1. Teaching mode ..... 34
10.1.1. Block operation ..... 34
10.1.2. Recording ..... 35
10.1.3. Basic instructions ..... 36
10.1.4. Extended instruction ..... 36
10.1.5. Editing columns ..... 36
10.2. Automatic mode ..... 38
10.3. Process of editing and running the program ..... 38
10.3.1. Creating or opening a file ..... 38
10.3.2. "Record" continuous track and IO motion. ..... 39
10.3.3. "Step", "Forward", "Back" function confirmation and correction track ..... 39
10.3.4. Handwheel run test ..... 39
10.3.5. Operation observation of "Repeat" ..... 40
11. Introduction to program page instructions ..... 41
11.1. Basic instructions ..... 41
11.1.1. Process Control ..... 41
11.1.2. Waiting type ..... 43
11.1.3. Status setting ..... 44
11.1.4. Motion command ..... 45
11.1.5. Function module calling ..... 48
11.2. Extended instructions ..... 50
12. Use coordinate system to simplify programming and maintenance ..... 60
12.1. Setting XYZABC directly ..... 60
12.2. World Record XYZ ..... 60
12.3. World record XYZABC ..... 60
12.4. Coordinate system record ..... 61
12.5. Current position and attitude ..... 61
12.6. Dynamic position and attitude ..... 61
12.7. Joint record ..... 62
12.8. Setting the joint coordinates directly ..... 62
12.9. Re-offset direct setting ..... 62
12.10. Re-offset dynamic setting ..... 62
13. List ..... 63
13.1. Put the program into the list ..... 63
13.2. Select to execute ..... 64
13.3. Appoint to execute ..... 64
14. Composition of Program Modularization ..... 66
14.1. Calling program files ..... 66
14.2. Calling O files ..... 67
14.3. Calling G files ..... 69
15. NC Editing ..... 71
15.1. Types of files. ..... 71
15.2. Viewing and editing methods ..... 72
16. NC execution ..... 73
16.1. Runnable files ..... 74
16.2. Viewing mode ..... 74
17. Description of use of system $G$ code ..... 76
17.1. Fast moving (G0, G1T2), direct moveing (G1T4) ..... 76
17.2. Path movement (G1, G1T5) ..... 77
17.2.1. Linear (S0) ..... 78
17.2.2. Arc Transition (S1) ..... 78
17.2.3. Arc midpoint (S2) ..... 79
17.2.4. Arc Center (S3) ..... 79
17.2.5. Arc End Point (S4) ..... 79
17.3. Clockwise arc and counterclockwise arc (G2, G3) ..... 79
17.4. Wait (G4) ..... 80
17.5. Switch tool parameters (G5) ..... 80
17.6. Switch coordinate inversion mode (G6) ..... 81
17.7. Set the path process (G7) ..... 81
17.8. Wait for arrival of interrupt counting (G8) ..... 82
17.9. Wait correct arrival (G9) ..... 82
17.10. Joint Record Movement (G10) ..... 82
17.11. World record movement (G11) ..... 83
17.12. Set whether the command of the axis output (G13) ..... 83
17.13. Get the world coordinates (G17, G1T17) of the final position ..... 83
17.14. Get the work coordinate(G18, G1T18) of the final position ..... 84
17.15. Get the joint coordinates (G19, G1T19) of the final position ..... 84
17.16. Wait for Point I(G20) ..... 84
17.17. Wait for R value ( G 21 ) ..... 85
17.18. Set O(G22) ..... 85
17.19. Set R(G23) ..... 86
17.20. Sensing point I stop (Rbit comparison) (G31) ..... 86
17.21. Sensing torque stop (R value comparison) (G32) ..... 87
17.22. Coordinate system re-offset (G52) ..... 88
17.23. Set the work coordinate system (G54) ..... 90
17.23.1. The offset of position and attitude specified directly by O0 (preset) ..... 90
17.23.2. O1 uses position XYZ in the world record ..... 90
17.23.3. O 2 uses position and attitude XYZABC in world records ..... 90
17.23.4. O3 uses coordinate system records ..... 90
17.23.5. O4 uses the current position and attitude ..... 90
17.23.6. O5 uses dynamic position ..... 90
17.23.7. O6 uses joint records ..... 90
17.23.8. O7 directly set joint coordinates ..... 91
17.23.9. O8 directly set re-offset ..... 91
17.23.10. O9 re-offset dynamic setting ..... 91
17.24. Rotating the coordinate system (G55) ..... 91
17.25. Coordinated coordinate system (G56) ..... 91
17.26. Bulk separating axis coordinate system (G57) ..... 91
17.27. Start dynamic compensation (G61) ..... 92
17.28. Turn off dynamic compensation (G60) ..... 92
17.29. Interpolation table conversion (G69) ..... 92
17.30. Set the flexibility level (G89) ..... 92
17.31. Set the synthetic acceleration/deceleration time (G90) ..... 93
17.32. Set the shaft speed smoothing time (G91) ..... 93
17.33. Set the shaft speed tolerance (G92) ..... 93
17.34. Serve lag eliminates and updates coordinates (G95) ..... 93
17.35. Update coordinates (G96) ..... 93
18. Macro syntax ..... 94
18.1. Variables ..... 94
18.1.1. Regional variables: ..... 94
18.1.2. Global Variables: ..... 94
18.2. Core resource IOCSAR access ..... 94
18.3. Mathematical fnctions ..... 95
18.4. Program flow control ..... 96

## 2. Instructions of handheld box and screen configuration

### 2.1. Shape of handheld box



| $[$ | Screen lock function, refer to the description of following sections |
| :--- | :--- |
| 0 | The light signal shows the current alarm and the button reset <br> system (equivalent to the reset button on the screen) |
| Other buttons | Refer to the description of following sections |

### 2.2. Instructions for screen configuration

## Title Bar



Left Function Menu Area
2.3. Title Bar

|  |  | pera |  | Display the system version number, the current login level, click on this area to enter the permissions page. |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| World $\frac{x}{y}$ | 0.00 A <br> 454.00 B <br> 754.9 C | 0.00 90.00 0.00 | 0.00 0.00 0.00 | This area will display the coordinate values in this coordinate system according to the system mode (maintenance, automatic, teaching), and the selected coordinate system (world, work, tools, joints). |  |  |  |  |  |
|  |  |  |  |  |  | g thre <br> to ect p ay a k it a $\square$ Cali Pos R91310 $\square$ <br> 9 |  | in this area screen lock to operate uare of "For assword |  |
| Click <br> th | $\begin{array}{\|r\|r} \text { Rea } \\ \hline 100 . \end{array}$ <br> the upp start stat | $0 \%$ <br> r half of s |  | Displays the rate percentage of the system operating speed in the current system state and automatic mode. <br> Not ready: It will stay in this state until the coordinates of any of the motors are not confirmed. In this state, the automatic mode cannot be used, and the teaching mode operation can only be the joint coordinates. <br> Ready: When the coordinates of each motor have been confirmed, it will become ready to complete. After the being ready, there is a way to enter the "automatic mode", |  |  |  |  |  |


|  | because the kinematics calculation path of the robot is meaningful after the coordinates of the axes of the system are correct. <br> Operating : The automatic program is running. <br> Pause, section stop: The system is running but enters the pause state for any reason. <br> Teaching: Performing teaching. |
| :---: | :---: |
| Pos 10 | Enter the link between the coordinate page and the IO page. |
| Alarm Reset <br>   | Prompt whether the system currently has an alarm warning. Click on the alarm warning area to display the current content of alarm warning. Click "Reset" to clear the current alarm warning if the establishment condition for the alarm warning has disappeared. |
|  | Press this button to switch the A870 to put the system into an emergency stop state. <br> The system's emergency stop can be triggered by multiple sources: handheld box, upper software, electric cabinet, external signal... |

### 2.4. Right quick-operating area

|  | Handwheel mode: switch whether to operate with the handwheel <br> automatic mode: adjust the percentage of speed during <br> Maintenance and teaching mode: adjust the speed percentage <br> during manual operation |
| :--- | :--- |

ander
Maintenance mode: Perform operation control of a single motor.
Usually used for the time of debugging.
Auto: Used to launch a program or to operate a specific action
on each page.
Teaching: Move with the coordinate system direction such as
"world", "work", "tool" and "joint" as a reference.

### 2.5. Left function menu

The buttons displayed on the left are arranged as standard version of the function
items, which can edit the page and add the linked function buttons according to
the application requirements.
Each button is linked to the corresponding function page, and the description of
each page is described in the following sections.

## 3. Common pages

### 3.1. Startup

When the system starts, the "Startup" page will be displayed first, through which you can see the coordinate status of each axis. The number in the "Status" column represents the result of setting the coordinates, 23 represents the completion of setting coordinates, and the remaining numbers represent "Unsettings", "Settings" or "Settings failure".


## Automatically set coordinates:

Press this button in the automatic mode to automatically execute the program of setting the coordinates.
Note 1: If the control mode is bus absolute, this function is unnecessary. Normally, the coordinate reset will be completed automatically after each emergency stop state is released.
Note 2: The operation of setting the coordinates will be different depending on the use of "absolute motor". If "absolute motor" is used, the set coordinates will directly read the motor's encoder and convert it to the coordinates in the controller, there will be no actual mechanism movement; If a "non-absolute motor" is used, there will be an actual mechanism movement to find the reference point (origin sensor or Z-phase signal).

## Back to the calibration point:

In the "teaching" mode, the mechanism may gradually move toward the coordinates of the calibration point when pressed, and stop when it arrives or is released.

## Accumulated motion time:

This time will accumulate as long as any motor has an motion.

## Reset motion time:

When pressed, the accumulated motion time can be reset to zero.

### 3.2. Permissions



This system is divided into five types of permissions:
0 . Operator: end-user operator, responsible for operating the machine. This is the permission preset when startup.

1. Manager: The management of the end-user, responsible for the editing and writing of the program. Please ask the factory personnel for the factory default password.
2. Developer: Used by the motion process developer to write the motion process. Please ask the machine factory for the default password.
3. Machinery factory: used by the machinery factory that manufactures robots, responsible for robot debugging, origin calibration, limit and authorization settings. Please ask the machine factory for the default password.
4. System level: used by the person responsible for system settings, responsible for the robot's mechanism and motor parameter settings. Please ask the machine factory for the default password.

The default permission of the system after startup is the operator.
The method of login permission: Click on one of the manager, developer, and machine factory to pop up the password input screen. After inputting correctly, you can see the functions that can be performed.

Logout: Simply press the "Logout" button.

Change password: Enter the current password, new password, confirm password and press "Change".

### 3.3. Coordinates



This page contains coordinate system display and setting, coordinate display, coordinate motion function. When login with administrator or above and in the "teaching" mode, all functions of this page can just be used.

### 3.3.1. Coordinate system and settings

|  |  |  |  |  |  |  | Preset bar: When startup, the system will set this set value to the current work coordinate system. You can enter a value on the content of the field. <br> Coordinate system bar: The value of the work coordinate system currently in use, which can be entered in the content of the field. <br> Select preset: re-apply the setting of the preset coordinate system to the work coordinate system. <br> Select current: Set the current world coordinates to the coordinate system value. You can also click on a field in the world coordinates to set the value of the field to the current coordinate system. <br> Set as preset: Set the current coordinate system value to the default coordinate system for the next startup. <br> Origin : Move straight to the origin of the coordinate system (move when pressed and stop when released.) <br> Calibration point : To the calibration point position marked on the startup page (move when pressed and stop when released). |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FromDef |  | -1 |  | FromCur |  |  |  |  |
|  | Default |  | Current |  |  | w |  |  |
| x | -40.343 |  | -40.343 |  | $x$ |  |  |  |
| Y | 1295.154 |  | 1295.154 |  |  |  |  |  |
| z | 52.677 |  | 52.677 |  | z |  |  |  |
| A | 7.977 |  | 7.977 |  | A |  |  |  |
| в | 1.271 |  | 1.271 |  | B |  |  |  |
| c | -0.728 |  | -0.728 |  | c |  |  |  |
| SetAsDef |  | To Zero |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

### 3.3.2. Current coordinates display

| :ur | 210.000 | 1 | Reset |  | Close |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Measure | Path Back |  |  |  |
|  | WorldPos | WorkPos | Toolpos |  | JointPos |
| x | 0.000 | -123.333 | 0.000 | J1 | -68.439 |
| Y | 0.000 | -1295.402 | 0.000 | J2 | -34.576 |
| z | -210.000 | -234.036 | -210.000 | J3 | -192.645 |
| A | 111.561 | 105.446 | 111.561 | J4 | 0.000 |
| B | 47.221 | 47.532 | 47.221 | J5 | 0.000 |
| c | 74.896 | 73.221 | 74.896 | J6 | -105.104 |
| Cali | MPG | x 1 | x 10 x | 100 | Teach |

## Display current world coordinates, work coordinates, tool coordinates

Span: Zero the current tool coordinates to understand the distance of the motion.

Note 1: From the tool coordinate information, the relative relationship between the current point and the point when the span is pressed can be known.
Note 2: When the "tool" of the coordinate selection is pressed, it is equivalent to pressing the Span key.
Path rollback: system automatically

| records the path that has been <br> traveled. This function can be used <br> to reverse back according to the path <br> that has traveled. In the automatic <br> mode, it moves when this button is <br> pressed and stops when released. |
| :--- | :--- |
| Reset: equivalent to the reset function on |
| the title bar |
| Close: Close window of coordinate page |

### 3.3.3. Operation for motions

| World W | Work Joint | Coordinate selection: <br> You can select the coordinates of "World", "Work" and "Joint". |
| :---: | :---: | :---: |
| JointPos |  | Coordinate input: <br> You can click the coordinate value field to input the value directly, or press "Select Current" to bring the current coordinate value first, and then modify it for specific items. |
| J1 | 0.000 |  |
| J2 | 0.000 |  |
| J3 | 0.000 |  |
| J4 | 0.000 | Move to coordinates: <br> Press "To" to move to the target coordinate value, and stop when it is released. |
| J5 | 0.000 |  |
| J6 | 0.000 |  |
| GetCur | r GoTo |  |

### 3.4. IO



This page displays system built-in resources along with user-defined resources.
DI : Digital input signal
DO : Digital output signal
AI : Analog input
AO : Analog output
TCI : Temperature sensing input
R: Register
G: G-code
M : M-code
Ins : Insert macro

Update: Used in the development phase of the developer to re-read the contents of definition files of the resources.
Cancel: Close this window

Note 1: The sample files of the user-defined resource can be obtained from
ReconTool/File/language/UserString_0000.str

### 3.5. Alarm warning page

This page shows current and historical alarms and warnings.


Note 1: The user-defined alarm warning exists in ReconTool/file/language/UserAlarm_0000.str, which can be downloaded and edited, and then uploaded to overwrite the original file. The alarm range is from R29000.00 to R29049.31, and the warning range is from R29050.00 to R29099.31.

## 4. Introduction to basic concepts

### 4.1. Introduction to space coordinates (position and attitude)

The coordinates of the manipulator generally refer to the position and attitude of the end point. Refer to the figure below, which is a six-joint manipulator with a schematic diagram of an additional tool. The following is a description of the coordinates of the LNC joint robot: Pbase (the origin of world coordinates) is defined in the center of the base. If you think of the manipulator arm as a person, the direction of the XYZ axis is the same as the direction of our well-known axis. The right side is +X , the front is +Y , and the above is +Z .

In addition to the position in space, the Ptool also contains the axis representing its attitude. Pwork is designed to facilitate offline programming and to allow multiple groups of robots to share the same set of machining programs. It also includes position and attitude axes in space. World coordinates refer to the spatial position and attitude of Ptool relative to Pbase. Work coordinates refer to the spatial position and attitude of Ptool relative to Pwork.


The Pbase, Ptool, Pwork, world coordinates, and work coordinates all include position and attitude. The position in space is as commonly understood and commonly used ( $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ ), but the space attitude is different and difficult to understand.
The space attitude is usually represented by (A, B, C). It has a specific rule, collectively called Euler's rotation theorem, which is used to indicate the possibility of various directions. A more detailed description can be found by searching the Internet for Euler's rotation theorem. The rules of Euler's rotation theorem are not necessarily the same in each robot system.
LNC's Euler's rotation theorem is defined as ZXZ, and the universal is the right-hand rule, ie A is the angle of rotation around the +Z axis.
$B$ is the angle at which the axis rotates ( +X after A rotation).
C is the angle at which the axis rotates ( +Z after AB rotation).
The figure below is an example:

|  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| Before rotation <br> $(0,0,0)$ | Rotate 45 degrees <br> around Z <br> $(45,0,0)$ | Rotate 30 degrees <br> around X <br> $(45,30,0)$ | Rotate 30 degrees <br> around Z <br> $(45,30,30)$ |  |

### 4.2. Various coordinates and their relevance

The system can adapt to a variety of robot types at the same time and uses the same coordinate concept for development, please be clear, which is helpful for subsequent operations, programming and development. Some special terms are as follows:
Motor coordinates: The actual coordinate value of the motor is independent of the coaction between the mechanisms.

Joint coordinates: The coordinate value of the motor coordinate after the mechanism coupling relationship is converted. (visual mechanism state in appearance)
World coordinates: The position and attitude of Ptool when the center of the manipulator base is the origin.

Forward kinematics: An algorithm that converts motor coordinates to world coordinates. Inverse kinematics: An algorithm that converts world coordinates to motor coordinates.


## Work coordinates:

Converted from world coordinates (points) through the work coordinate system

## Tool coordinates:

Converted by world coordinates (points) through tool coordinates


### 4.3. Fast moving

The motor of each axis is directly rotated to the target position according to the joint coordinates of the target point, regardless of the motion curve. There are two types of quick instruction applications:

1. There are no obstacles between the starting and ending points, as long as they can arrive quickly.
2. The attitude of the starting and ending points spans different quadrants, using when path motions cannot be achieved.

Note: This instruction can be used when the 3rd or 5th joint of joint coordinate of starting and ending points has a span of 0 degrees.
The change process of each joint is proportionally converted according to the difference between the current and target joint coordinates, so that the target point can be reached most quickly, but since the attitude change in the actual conversion process is related to the current coordinate, the change process cannot be ensured. Therefore, it's necessary to be careful when using it.

### 4.4. Path motions

The path motion is a reference point for the path calculation of the Ptool. In addition to the spatial position, the attitude change should also be considered. The guidelines for processing path motions in the system are as follows

| Path type <br> (command composition) | Position track | Attitude change |
| :--- | :--- | :--- |
| Linear | Spatial linear | According to the distance traveled, <br> the attitude is changed in equal <br> proportions. |
| (Starting point - linear point) | Three points form a <br> spatial plane | Half of the arc is classified as the first <br> half and the other half is classified as <br> the second half. <br> The first half changes to the attitude <br> of the transition point by the distance <br> Arc transition and the second half also changes |
| The radius of the |  |  |
| ransing point - transition | transion circle can <br> be specified on the | (Starting |


| point - linear) <br> (Starting point - transition point - transition point linear) | arc transition point. Setting 0 means using the default value. If it is larger than the maximum possible radius, it means using the maximum radius. | to the end point according to the distance ratio. |
| :---: | :---: | :---: |
| Three-point arc <br> (Starting point - midpoint of the arc - linear) (Starting point - midpoint of the arc-arc end point) | Three points form a spatial plane <br> If the end point uses the arc endpoint command, you can additionally specify the angle that the arc will around in total. | The midpoint of the arc can specify the way the attitude changes. <br> 1. Three-point linearity: The starting point, the midpoint, and the end point are divided into two straight lines to change the attitude. <br> 2. Two-point linearity: Ignore the midpoint's attitude and change the attitude by the arc length ratio. <br> 3. Three-point arc: The starting point, the midpoint, and the end point are divided into two arcs, and the attitude is changed along with the arc plane. <br> 4. Two-point arc: Ignore the midpoint's attitude and change the attitude around the arc plane by the length ratio of the arc. <br> 5. Fixed starting point: fixedly use the starting point of the attitude, and the attitude of midpoint and the endpoint are ignored <br> 6. Starting point AB : The B value of the starting point is fixedly used. The A value changes with the rounding angle, and $\mathrm{A}+\mathrm{C}$ is the fixed value. <br> 7. Starting point ABC : The BC value of starting point is fixedly used, A value changes with rounding |


|  |  | angle |
| :--- | :--- | :--- |
| Center and arc | Three points form a <br> spatial plane | The center of the arc can specify the <br> way the attitude changes. |
|  | If the end point uses <br> the arc endpoint | The attitude change refers to the items <br> $2,4,5,6$, and 7 of the three-point arc. |
| (Starting point $-\operatorname{arc}$ center - | command, you can <br> additionally specify |  |
| linear) | the angle that the arc <br> (Starting point - arc center - <br> arc end point $)$ |  |

Note: The attitude change has its practicality in some processing applications. Please select the appropriate method according to actual needs.

## 5. Maintenance and teaching mode

### 5.1. Button names

| Mode selection | Handwheel mode | Speed percentage | Continuity |
| :---: | :---: | :---: | :---: |
|  | 8 MPG 68 8 |  | $\xrightarrow{\text { CONT }}$ |


| Speed multiplier |  | Coordinate system selection |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\times 1$ | $\times 10$ | $\times 100$ |  |  |


| Motion buttons |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W+ | V+ | U+ | $\sqrt{0 \mathrm{C}+}$ | J5+ | A+ | $\mathrm{Z}^{\mathbf{Z}+{ }^{\circ}}$ | $\mathrm{Y}+$ <br> $\mathrm{P}+$ | - $\begin{array}{r}\text { X+ } \\ \text { J+ }\end{array}$ |
| W- | V- | U- | $\begin{array}{r} \mathrm{C} \\ \mathrm{~J} \\ \hline \end{array}$ | $\begin{gathered} \mathrm{B}- \\ \mathrm{J} \\ \hline \end{gathered}$ | $\begin{array}{r} \text { A- } \\ \hline 14 \\ \hline \end{array}$ | $\begin{array}{r} \mathrm{Z}-\mathrm{S} \\ \mathrm{JK} \end{array}$ | $\mathrm{Y}-$ J. | X- |

### 5.2. Mode description

| Maintenance mode: Rotate the motor, it can still move when the |
| :--- | :--- | :--- |
| preparation is not ready, and it can still run away from |
| the limit when the axis exceeds the limit. |

### 5.3. Differences between handwheel and non-handwheel modes

|  | Non-handwheel mode | Handwheel mode |
| :---: | :---: | :---: |
| When the motion button is pressed | The machine moves immediately | It represents the axial direction of the motion when the handwheel is rotated. |
| Direction control | Press different arrow keys | The handwheel rotates in the forward and reverse directions. |
| Speed control | Select Contiguous Speed multiplier x speed percentage | Speed multiplier x handwheel rotation rate |
| Incremental control | Select non-contiguous <br> It moves some distance if pressed for one click, and the distance is determined by the speed multiplier. | Rotate grid by grid. |
| Position control (e.g. "To" on multiple pages) | "To" button moves when pressed and stops when released | Press "To" to enter the motion state, when the handwheel rotates forward, it advances, and when the handwheel reverses, it retreats. |

Note: The usual usage in non-handwheel mode is to use the $\boldsymbol{\rightarrow}$ method when it is far enough away from the target point so that the target point can be approached quickly; When the target position is approaching, use the $\stackrel{\ominus}{\bullet}$ mode so that it can be accurately adjusted to the target point.

### 5.4. Coordinate system selection during motions

| Z+ | Y+ | X+ |
| :---: | :---: | :---: |
| J3+ | ア+ | Jt+ |
| Z- | Y- | X- |
| J3- | J- | J- |

Depending on the selected coordinate system, the direction of XYZ motions is determined by the selected coordinate system.


Joint coordinate system : Defines the decision based on the direction in which the joint rotates.

### 5.5. Direction rotation in teaching mode

| C+ | B+ | A |
| :---: | :---: | :---: |
| J6t | J5+ | J4t |
| c- | B- | A- |
| J6- | J5- | 14. |

There are three ways to rotate the direction in teaching. You can choose the options that are easier to understand according to the type of mechanism and personal habits. The options are as follows.

```
Teach Rotate Mode Change ABC Value
```

Directly operate on the current coordinate ABC value of the selected coordinate system, which is more suitable for the end axis of the orthogonal robot.

| Teach Rotate Mode | Tilt By Selected Coor |
| :--- | :--- |

Rotate the XYZ axis of the selected coordinate system to maintain the same angle with the coordinate axis and rotate in different directions.

## Teach Rotate Mode $\quad$ Tilt Always By Tool Coor

Regardless of the currently selected coordinate system, it is forced to change to the direction of the tool. It can be imagined that people sit in the Ptool, the eyes are facing $\mathrm{Y}+$ direction, the joystick is in the hand, $\mathrm{A}+$, A - is equivalent to the left and right of the joystick, which will cause the tool to tilt in the X direction; $\mathrm{B}+, \mathrm{B}$ - is equivalent to the front and rear of the joystick, which will cause the tool to tilt in the Y direction; $\mathrm{C}+, \mathrm{C}$ - means rotate in place.

## 6．Tools

The coordinates of the robot represent the spatial position and attitude of Ptool at end，but the tool is installed after the robot is out of the machine，so there must be parameters to specify the position and direction of Ptool，which is called the tool parameters． The system provides four sets of tool parameter settings，each set of parameters contains six items，where offset X ，offset Y ，offset Z describes the relative position between the Ptool and the flange face，angle A ，angle B ，and angle C describe the direction of the point．


Tool calibration steps
1．Click the tool number $0 \sim 3$ to be corrected ，for example 3 。

2．Click the item
 to be corrected and press

## 清除

3．The robot moves to the attitude of the right figure，while a point is installed externally，and
$\square$
取點1
press after aligned．
4．The external point does not move，the world coordinates rotate C about 90 or 180 degrees，then XYZ moves，so that the Ptool is aligned again with the

取點2 external points，press


5．Press 推筷 ，誤差X

6．Click the value on
 to add the error to tool parameters．
7．Click the item $\square$ to be corrected and press

8．After the robot aligns the points with the two attitudes as shown on the right figure，press
respectively ${ }^{\text {取點1 }}$ and ${ }^{\text {取點2 }}$ ．


9．Press
 to see the value．

10．Click the value on $\square$ to add the error to tool parameters．

11．If the direction of the Ptool is not parallel to the axis of the sixth axis，you need to set the tool angle．First set the tool angle $A$ ，angle $B$ ，and angle $C$ to 0 ．
12．Click the item to be corrected $A B C$
13．Turn the direction of the Ptool so that the tool direction is consistent with the direction of the world coordinates．

14．Press $\square$ and the system will automatically bring in the value of angle A ，angle B and angle C ．


## 7. Point record

There are two types of point records: world records and joint records.
You can use the "joint record" or "world record" command to program the position that needs to be different due to installation. It is only necessary to re-calibrate the point record when the actual site is installed, and it is not necessary to modify the programming content on site.


## Get World Rec <br> Update to the currently selected world record with current world coordinates <br> To World Rec <br> : The linear path is calculated according to the current position and the target position. <br> Get Joint Rec <br> : Update to the currently selected joint record with the current joint coordinates. <br> To Joint Rec <br> : Move to the selected joint record position in a fast moving manner.

Note 1: The point record can be used as a coordinate system in addition to the point of operation.

## 8. Security point

During the running of the program, the initial position of the restarting program may be different from the ideal starting position due to sudden power failure or reset. If the manipulator stops at a point where interference may occur, start program rashly may cause a collision.
The setting of system planning five sets( $0 \sim 4$ ) joint coordinate check interval, five sets( $0 \sim 4$ ) world coordinates check interval and the position interval can be set through the following page.


GetCur
Get the current coordinate value and set it as the coordinate of the security point.

To Pos
: Move to the security point position (Moves when pressed and stop when released)

Note 1 :

| SafePos0 to Start | Yes |
| :---: | :---: |
| can be set on the option page. If the robot's |  |

point is wrong when starting, it will directly send an alarm to avoid the danger of collision.

Note 2 : When the program starts, you can check the position of the robot by checking whether
0950~0954, 0960~0964 are on, and give the appropriate path back to the safe starting position.

## 9. Coordinate system

The coordinate system is mainly used to adapt to the position relationship between the robot and the workpiece, including the offset and rotation and tilt of the work area. The system provides 10 sets of coordinate system records to meet the needs of multiple sets of processing areas.

The following figure can be divided into two areas, the left side is used to view the current coordinate system record, and the right side is a three-point coordinate system method to help calculate the positional offset, direction rotation and tilting of the coordinate system.

After the coordinate system is determined using three points, it can be stored in the coordinate system record for use in the program.


## Get Cur Pos

bring the current world coordinates of the robot into the coordinate system

## record.

SetAsNow
: Set the selected coordinate system record value to the current work coordinate system.

Get XYZ : bring the XYZ of the right P 0 into the coordinate system record.

Get ABC
: bring the "coordinate system attitude" ABC calculated from the coordinate system on the right into the coordinate system record.

## Principle and operation of three-point coordinate system

In mathematics, we can determine a coordinate system through three-point positions, where:
P0 : origin of the coordinate system

P1: the point on the main axis

P2 : point on the secondary axis (on the plane)
According to the difference of the actual workpiece or the direction of the action path, the main axis may be a point on $+\mathrm{X},-\mathrm{X},+\mathrm{Y},-\mathrm{Y},+\mathrm{Z},-\mathrm{Z}$, and the secondary axis is also the same, so 24 kinds of three-point definition can be provided.

After selecting the relative position of the object in the working area and the manipulator arm, the three-point coordinate system can be set. The operation mode is as follows:

1. First select the origin P0 and P1, P2 to be used as the basis for the calculation of the coordinate system.
2. First adjust the robot to an appropriate attitude and align to P0, P1, P2.
3. According to the axial direction where P1 and P2 are located, click the upper axial selection to switch the axis.
4. Press XYZABC below to align the Ptool to P0, then press "P0" to bring "Current World Coordinates" into P0 coordinates.
5. If you only intend to use the position of the offset coordinate system and do not intend to change the rotation of the coordinate system, just correct P0.
6. Press XYZABC below to align the tool Ptool to P1, then press "P1" to bring "Current World Coordinates" into P1 coordinates.
7. Press XYZABC below to align the tool Ptool to P2, then press "P2" to bring "Current World Coordinates" into P2 coordinates.
8. The system automatically calculates the attitude of the coordinate system.

## 10. Introduction to operation interface of program page

### 10.1. Teaching mode


10.1.1. Block operation


### 10.1.2. Recording

|  |  |  |  |  | The recording function is mainly for the convenience of quickly teaching a motion path, so only a few path commands and output control commands are placed on the screen. <br> On the list of programs, after selecting the position where the recording command is to be inserted, click the button on this screen. <br> After moving the robot to the preset position, press the action to be performed to move to this position. This process is called "recording". Because each robot position has a variety of coordinate system representations, the recording is directly using the coordinate system used in the current teaching, or specifying which coordinate system to record. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BlockOP | Record | BasicCmo Ex | Cmd | ProdAct |  |
| $\pm$ Select Coor |  | Joint Coor |  |  |  |
| Cen |  | Pass | Fast |  |  |
| End |  | Mid | Line |  |  |
| Dutput İ | 201 | On | OnAutoOff1 |  |  |
| Delay | 500 | Off | OnAutoOff2 |  |  |
| InPos | Delay | On Pulse | OnAu | to Off3 |  |
|  |  |  |  |  |  |


| Keys | Record command | Command parameters |
| :---: | :---: | :---: |
| Select coordinate system | Select coordinate system | The coordinate system selected is used as the recorded coordinate system. |
| Fast path | Fast path | If the "Select Coordinate System" function is not on, the coordinate system of the teaching motions is used as the recording coordinate system to generate a command line that moves to the current position. <br> If the "Select Coordinate System" function is on, the coordinate system selected at rear is the recorded coordinate system. |
| Linear path | Linear path |  |
| Arc midpoint | Arc midpoint |  |
| Arc transition | Arc transition |  |
| Arc center | Arc center |  |
| Arc end | Arc end |  |
| In place | In place | Range of in-place |
| Delay | Delay | Delay time |
| ON | Set O | Different setting states |
| OFF |  |  |
| ON pulse |  |  |
| ON background OFF1 |  |  |
| ON background OFF2 |  |  |
| ON background OFF3 |  |  |

### 10.1.3. Basic instructions



### 10.1.4. Extended instruction

| BlockOP R | Record Basic | sicCmo ExtCm | nd ProdAct | Extended instructions contain some common features, either to make the program list easier to read, or to include a composite motion flow in a single instruction. <br> After clicking one of them, the item details of the item will appear for editing. After editing, press "OK" to add the instruction to the program list. <br> The following sections are described in detail. |
| :---: | :---: | :---: | :---: | :---: |
| Tool | Space | Coor | Work Rev |  |
| ensor Sto | SafePos | Flow CtI | Soft |  |
| FileCall | Exf | Matrix | Stack |  |
| PathGen | Add Axis | tandshakt ${ }^{\text {P }}$ | Pick-Place |  |
| nfirm Sig Find Coor |  |  |  |  |
|  |  |  |  |  |

### 10.1.5. Editing columns

| Detail | $1 \sim \mathrm{~N}$ | Cut | Copy | Paste | Up | Dn | Backward | Forward | Step | OK |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Detail: It can be used to switch the display mode of the program. There are three types: detailed, simple, and G code.
$\mathbf{1 \sim N}$ : Re-arrange the order in the description based on the column number of the program. The main purpose of this motion is to let the operator understand the order of the operations, so that when the insertion position is mishandled, it is convenient to know how to adjust the order of the program lines.

Cut : Cut the contents of the selected column and paste it into the internal clipping area.

Copy : Copy the contents of the selected column and paste it into the internal clipping area.

Paste : Paste the contents of the internal clipping area onto the position of the selected column in the list.

Up: Moves the currently selected column up.

Down : Moves the currently selected column down.

Back: If the current position is matched with the selected command line, pressing this button to let the robot return along the path until the previous command point.

Forward :If the current position is matched with the selected command line, pressing this button to allow the robot to forward along the path until the next command point.

Single-step : Move the robot to the position where the command line is currently selected.

## Description: The single step, forward and back functions are especially suitable for confirming the accuracy of the track and speeding up the debugging program.

### 10.2. Automatic mode



### 10.3. Process of editing and running the program

### 10.3.1. Creating or opening a file

Clicking on the block of file name to pop up operation page of program files, through which to create, save, and open the program files.


### 10.3.2. 'Record" continuous track and IO motion

1. Switch to teaching mode and click Record
2. Move the robot to the target position with a button or handwheel
3. Set "Select coordinate system"
4. Click on the line or other action command
5. Repeat steps $2 \sim 4$ to complete the action flow.

| BlockOP | Record | BasicCmo | ExtCmd | ProdAct |
| :---: | :---: | :---: | :---: | :---: |
| x Select Coor |  | Joint Coor |  | - |
| Cen |  | Pass |  | ast |
| End |  | Mid | Line |  |
| Putput IC | 201 | On | OnAutoOff1 |  |
| Delay | 500 | Off | OnAutoOff2 |  |
| InPos | Delay | On Pulse | OnAu | toOff3 |

### 10.3.3. 'Step", "Forward", "Back" function confirmation and correction track

1. The robot can be reached on the trajectory by pressing the Step to execute the selected command line.
2. Pressing forward and back allows the robot to move along the trajectory to the next command point.
3. If the trajectory is deviated, you can adjust the position, then press


## Get Cur

and archive, then continue to use the Forward and Back to test to correct the trajectory.

### 10.3.4. Handwheel run test

1. Cut to automatic mode and select the handwheel.
2. Press Start to rotate the handwheel to let the program run at the speed of the handwheel.
3. If you think that the program does not work as expected, you can reset the program and then switch to manual mode to adjust the program.
4. After the adjustment is completed, execute the single step to the command line that the test just interrupted.

5. Switch to automatic mode again.
6. Click

7. Press Start to continue the unfinished run test.

### 10.3.5. Operation observation of "Repeat"

1. Click

| Cycle |
| :--- |
| to change it to |
| Repeat |

2. Close the handwheel.
3. Start the program, observe the effect of repeated running, and continuously adjust and optimize to the best.

## 11. Introduction to program page instructions

### 11.1. Basic instructions

| BlockOP | Record | BasicCmo | ExtCmd | ProdAct |
| :---: | :---: | :---: | :---: | :---: |
| Mark | Jump | I Jump | R Jump |  |
| Wait I | Wait R | Set O | Set R |  |
| Delay | InPos |  | Call G |  |
| Skill | DynPos | WorldRec | JointRec |  |
| Coor | Cen | Pass | Fast |  |
|  | End | Mid | Line |  |

### 11.1.1. Process Control




## LNC

### 11.1.2. Waiting type

## Wait I

Continue operating after waiting for I to match the status
Number: number of point I
Value: When the status of point $I$ is in accordance with this setting, the next action is performed.
Waiting: The longest waiting time.
Failure processing: processing after waiting time

## Wait R

Continue operating after waiting for R value to match the status
No.: R value number
Comparison method:
Value: Constant (fixed value), R value (refer to the content of another R value). Right box (constant value / $R$ value number)
Skip mode: refer to skip command
Waiting: The longest waiting time.


Failure processing: processing after waiting time
Delay

Moves after waiting time
Delay: The time need to wait

| Delay | 0 | ms |
| :---: | :---: | :---: |

## InPos

Move after waiting for arriving the position Arriving: 1/1000 degree, or lum

Note: The range of arriving will only be checked after the commands have been sent. So, setting a very large value may not have the desired effect.

| Range | 0 | LU |
| :---: | :---: | :---: |

### 11.1.3. Status setting

```
Set O
```

Set the status of point O
Number: the number of the point O
Value: Off, On, commutation (change to another state based on the current state of the point O) Wait: Set how long to wait before executing the next line.


## Set R

Set the content of R value
Number: the number of R value
Type of value:
Absolute: directly set the content of the R value to the content in the "Value" field.

Relative: Accumulate the content of the Value field based on the content of current R value.

No.: Set the R value of the specified R number

in the Value field to this R value.
Add 1 to the circulation: Add 1 to the current

$R$ value and set it to 0 when the value is greater than the set value in the Value field.
Value: Reference mode description

Waiting: Set how long to wait before executing the next line. When this value is filled in -1 , the system will wait until the previous command is executed, and then continue to interpret, which can be used to avoid synchronization during the motions, but it may make the motions less continuous. When set to -2 , it means to write immediately, not to write until the motions arriving to this line.

### 11.1.4. Motion command

## WorldRec

Record number: based on the record number. World record: Display the value of the world record directly based on the record number.
Current world coordinates: Display current world coordinates.
Point type: fast, linear...
Flexibility: input blank or 0~5 (corresponding to the setting of debugging page)
Speed: If the speed is 0 , it means the default linear speed is used.

| Rec ID |  | 0 | ee | Absol |  |  |  |  |
| :---: | ---: | :--- | ---: | ---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | WorldRec | hange/Rel | Cur World |
| X | -1.453 |  | 0.000 |  |  |  |  |  |
| Y | 433.285 |  | 0.000 |  |  |  |  |  |
| Z | 444.312 |  | -210.000 |  |  |  |  |  |
| A | 0.000 |  | 111.562 |  |  |  |  |  |
| B | 0.000 |  | 47.220 |  |  |  |  |  |
| C | 0.000 |  | 74.896 |  |  |  |  |  |
| Line | - | 0 | Speed | 0 |  |  |  |  |

$-1 \sim-100$ represents the percentage of the set speed in the debugging page.

## JointRec

Record number: based on the record number. Absolute/Relative: The input value in the
"Alternate/Offset" column is absolute or relative and can be used to change an element in the coordinates.

Joint record: Display the value of the Joint record directly based on the record number.
Current joint coordinates: Displays the current joint coordinates.

Point type: fast, linear...
Flexibility: input blank or 0~5 (corresponding to

| the setting of debugging page) <br> Speed: If the speed is 0, it means the default <br> moving speed is used. |  |  |  |
| :--- | :--- | :--- | :--- |
| $-1 \sim-100$ represents the percentage of the set speed <br> in the debugging page. |  |  |  |
| Coor | Direct Set XYZABC |  |  |
| There are many ways to set work coordinate | X | Set Value | Use Value |
|  |  |  |  |
| system, as detailed in the sections. | Y |  |  |

Paragraph distance: The position of the swing is repeated after every certain paragraph distance on the path.

Initial movement amount: The amount of movement at the beginning of the process when the movement distance is 0 .

Dynamic process: Same as Start, except that the parameters of the process are determined by the content of the R value.
Note: When using this function, the actual calculated process offset value must be smaller than the "Max Range of Process" column in the "Options Page/Run", otherwise the alarm will pop up.

| Cen | Pass | Fast |
| :---: | :---: | :---: |
| End | Mid | Line |

Absolute/relative: The content representing the set value is either absolute to the selected coordinate system or relative to the current coordinate of the target coordinate system.

Coordinate system: the coordinate system used to represent the contents of the set value
Flexibility: input blank or 0~5 (corresponding to the setting of debugging page)
Set value: XYZC
Speed: If the speed is 0 , it means the default moving speed.

$-1 \sim-100$ represents the percentage of the set speed in the debugging page.
Set to the current: Fill the current coordinates of the coordinate system into the set value according to the selected coordinate system.

## DynPos

Absolute/relative: The content representing the set value is either absolute to the selected coordinate system or relative to the current coordinate of the target coordinate system.

Coordinate system: the coordinate system used to represent the contents of the set value Number of XYZC set value: Source buffer for obtaining XYZC coordinate information. If this field is blank, it means that the previous coordinates are used.
,lPoint type: fast, linear...
Flexibility: input blank or 0~5 (corresponding to the setting of debugging page)

|  |  | Absolute |  | World Coor |
| :---: | :---: | :---: | :---: | :---: |
|  | Reg ID |  |  | Cur Pos |
| X |  |  |  | 0.000 |
| Y |  |  |  | 0.000 |
| z |  |  |  | -210.000 |
| A |  |  |  | 111.562 |
| B |  |  |  | 47.220 |
| C |  |  |  | 74.896 |
| Line | - | 0 | Speed | 0 m |

Speed: If the speed is 0 , it means the default moving speed is used.
$-1 \sim-100$ represents the percentage of the set speed in the debugging page.

### 11.1.5. Function module calling

## Call G

Call G code built-in by the system or manually written by the developer to provide greater flexibility
Parameter A(\#1): The first parameter to be transmitted to the G-code.
Parameter B(\#2) : The second parameter to be transmitted to the G-code.
Parameter C(\#3) : The third parameter to be transmitted to the G-code.
Parameter D(\#4) : The forth parameter to be transmitted to the G-code.
Parameter P(\#16) : The fifth parameter to be
transmitted to the G-code.
Parameter L(\#12) : The sixth parameter to be transmitted to the G-code.

### 11.2. Extended instructions

The extended command currently contains 18 practical process packages. The contents of many task packages need to be combined with additional page settings. Because there are many scopes, this document contains detailed instructions for the instructions and pages. Please ask the machine for instructions.

| BlockOP | Record |  | BasicCmo ExtCmd | ProdAct |
| :---: | :---: | :---: | :---: | :---: |
| Tool | Space | Coor | Work Rev |  |
| ensor Sto | SafePos | Flow Ctl | Soft |  |
| FileCall | Exf | Matrix | Stack |  |
| PathGen | Add Axis | tandshakt Pick-Place |  |  |
| mfirm Sig | Find Coor |  |  |  |


| Tool |  |  |  |
| :---: | :---: | :---: | :---: |
| Tool 0 |  | Any Tool |  |
| Tool 0 <br> Tool 1 <br> Tool 2 <br> Tool 3 <br> Tool 4 <br> Tool 5 <br> Tool 6 <br> Tool 7 <br> Assign Tool Set <br> Any Tool |  | OffsetX | mm |
|  |  | OffsetY | mm |
|  |  | Length | mm |
|  |  | Tool A | deg |
|  |  | Tool B | deg |
|  |  | Tool C | deg |
| Wait Action Finish | 1Yes/ONo |  |  |
| Used to dynamically switch the tool groups set in the tool page, or dynamically set the desired tool parameters. |  | Wait Action Finish | 1Yes/ONo |


| Space | Zone 1 | $\checkmark$ |
| :---: | :---: | :---: |
| Zone 0 <br> Zone 0 <br> Zone 1 <br> Zone 2 <br> Zone 3 <br> Zone 4 <br> Smart Start(Active Block) |  |  |
| Used to dynamically switch the preset range of points in the limit page to avoid operation or programming errors and exceed the allowed active space. |  |  |
| Coor |  |  |
|  | Coor 3 |  |
|  |  |  |
| Coor 1 Coor 2 |  |  |
| Coor 3 |  |  |
| Coor 4 Coor 5 |  |  |
| Coor 6 Coor 7 |  |  |
| Coor 8 <br> Coor 9 |  |  |
|  |  |  |
| It is used to dynamically switch the coordinate system record set in the coordinate system |  |  |
| page. The use can easily see the current | Wait Action Finish $\quad$ 1Yes/ONo |  |
| coordinate system in the program list. |  |  |
| Work Rev | Enable Work Reverse |  |
|  |  |  |
| Enable Work Reverse |  |  |
| Enable Work Reverse Disable Work Reverse |  |  |
| It is used in applications where the robot clamps the workpiece for path editing, such as polishing. |  |  |
| When the working coordinates are reversed, the three-point arc of the workpiece surface can be realized, which can greatly reduce the number of teaching points. |  |  |

```
ensor Sto
\begin{tabular}{|l|}
\hline I Stop(World) \\
\hline I Stop(World) \\
I Stop(Work) \\
I Stop(Tool) \\
\hline TorqueStop(World) \\
TorqueStop(Work) \\
TorqueStop(Tool) \\
\hline
\end{tabular}
```

It is used to stop the action when the sensing signal changes during the motion, for example the raw materials stacked by the punching machine, as the quantity decreases, the suction

| I Stop(World) |  |  |
| :---: | :--- | :---: |
| DistX |  | mm |
| DistY |  | mm |
| DistZ |  | mm |
| Speed |  | $\mathrm{mm} / \mathrm{min}$ |
| I70~73:MaskVal |  |  |
| I70~73:TrigVal |  |  | position changes. It can be judged whether the reclaiming position is reached by the sensor mounted on the tool during the process of lowering the reclaiming.

## SafePos

## WorldSafePosCheck <br> WorldSafePosCheck JointSafePosCheck <br> ToWorldSafePos <br> ToJointSafePos <br> Smart Start(WorldSafe) <br> Smart Start(JointSafe)

With the settings in the security point page, check whether the current position is within the range of the security point, and provide the function of moving the position of the security point.

|  |  | ToWorIdSafePos |
| :--- | :--- | :--- | :--- |




Joint Manipulator - Software Operation Manual



Joint Manipulator - Software Operation Manual

| handshaking signals. |
| :--- |
| Pick-Place |
| Pick <br> Pick <br> Place <br> Pick <br> Place |

The four instructions operate in the same way and provide different names to facilitate the purpose of distinguishing their instructions in the program list.

| Pick |  |  |
| :---: | :--- | :---: |
| World Record |  | $0 \sim 99$ |
| EndEffector G Code |  |  |
| Enter Dist |  | mm |
| Enter Speed |  | $\mathrm{mm} / \mathrm{min}$ |
| Leave Dist |  | mm |
| Leave Speed |  | $\mathrm{mm} / \mathrm{min}$ |
| Action Set R ID |  |  |
| Action Set R Value |  |  |

## nfirm Sig

## Enable Comfirm Signal

Enable Comfirm Signal
Close Comfirm Signal
Provides detection of four sets of signals. When the command between the start and the

Enable Comfirm Signal

| SetID |  | $0 \sim 4$ |
| :---: | :---: | :---: |
| Input ID |  |  |
| Comfirm Status |  | $0 / 1$ | stop is running, if the signal of the I point is detected to be inconsistent with the state that it should be, an alarm will be issued. It can be used in the process of taking workpieces to detect the use of falling workpieces.

## Find Coor

## Clear P1P2P3

Clear P1P2P3
Find P1
Find P2
Find P3
Cal H.. Offset+Rotate
Cal Space Offset
Cal Circle Center
When used in welding, the workpiece cannot be accurately placed. It is necessary to touch the surface of the workpiece through the welding wire to know the true position of the workpiece and set the actual work coordinate

Close Comfirm Signal


Find P1

| Max Find Dist $X$ |  | mm |
| :---: | :---: | :---: |
| Max Find Dist $Y$ |  | mm |
| Max Find Dist $Z$ |  | mm |


| system. | Cal H.. Offset+Rotate    <br> InterSetion $X$  mm  <br> InterSetion $Y$  mm  <br>     <br> Result Start R    <br>     |  |  |
| :--- | :--- | :--- | :---: |

## 12. Use coordinate system to simplify programming and maintenance

In addition to being used to calibrate the work area, the coordinate system can also be used as a reference point for peripheral actions. By using the coordinate system, the influence factor of the programming content can be reduced to only a few key points to achieve the purpose of program sharing and convenient maintenance.
The following is a description of the applicable timing for various setting of the coordinate system options:

| Direct Set XYZABC |
| :--- |
| Direct Set XYZABC |
| World Rec(XYZ) |
| World Rec(XYZABC) |
| Coor Rec |
| Instance XYZABC |
| Dynamic |
| Joint Record |
| Direct Set Joint |
| Direct Set G52 |
| Dynamic Set G52 |

### 12.1. Setting XYZABC directly

Fill in the value of the coordinate system directly.
It is suitable for use when inputting values arbitrarily in the development environment or when the coordinate system is fixed.

### 12.2. World Record XYZ

Set position (X, Y, Z) in the set world record number to "Work coordinate system", but set (A, B, C) to 0 .

Applicable to the XYZ type of the base and the coordinate system does not tilt and rotate. In the teaching mode, the position pointed by Ptool can be recorded as the origin of the coordinate system.

### 12.3. World record XYZABC

Set the position (X, Y, Z) and (A, B, C) in the set world record number to "Work coordinate
system".
It is suitable for the purpose of loading and unloading. And it only needs to calibrate the point at which the material of loading and uploading, then can be applied to the complete action position of material of loading and uploading. The method is to first set the world record point as the coordinate system, and then move to the position under the coordinate system, for example:

G54 O2 P15
G1 X0 Y0 Z10 A0 B0 C0 F3000
G1 Z0 F1000
G22 O201 S1 P100
G1 Z10 F3000
// Set P15 as the coordinate system
// Straight line to the position of Z10 of coordinate system // Move slowly to the position of coordinate system Z0 // O201 is set to On and waits for 100 ms .
// Move up to Z10 position

### 12.4. Coordinate system record

Set the coordinate system record to "Work coordinate system".
It is suitable for applications with fixed processing tabletops, which can be used to calculate the coordinate system by taking three points, such as coating adhesive, cutting and other uses.

### 12.5. Current position and attitude

Set the world coordinate position $(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ and $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ when the program is executed to this line to the "work coordinate system".
It is suitable to perform multiple moves according to the position after moving to a certain position while teaching the recording program, and if the point is modified later, all the subsequent moves can be automatically adjusted based on the modified point.
This use is especially suitable for packaging into $G$ code. As long as it is moves to the processing reference point and then call G-code, a series of actions of the position can be completed. The requirement for multiple reaming classes on one workpiece can effectively simplify programming.

### 12.6. Dynamic position and attitude

The content is read from the set R value as the value of the "work coordinate system". It is suitable to match the visual system. The coordinate system converted by the visual result is first filled in the R value, and the coordinate system value is dynamically captured by the program.

### 12.7. Joint record

The point position corresponding to the joint record is used as the "work coordinate system". The system first converts the joint record to world coordinates and then brings it into the value of the "coordinate system".
It is suitable for the condition that the tool parameters need to be dynamically switched but the actual position of the object cannot be changed. For example, the multi-fork jaw of the palletizer needs to be inserted into the groove of the roller conveyor to clamp the feed bag, but it cannot affect the position of the clamping because of setting different tool parameters.

### 12.8. Setting the joint coordinates directly

Same as the previous option, except that the coordinate values are direct inputs and are typically used for development environment testing.

### 12.9. Re-offset direct setting

Based on the current work coordinate system, the work coordinate value at a certain point is converted to world coordinates to replace the original "work coordinate system". It's usually used for development environment testing, or to simplify the repetitive coordinate conversion work on the working path.

### 12.10. Re-offset dynamic setting

Based on the current work coordinate system, the work coordinate value recorded in the R value is converted to world coordinates to replace original "work coordinate system".
It is suitable for resetting the coordinate system with the offset obtained after recognition when the vision system is mounted on the end of the robot.

## 13.List

The list page is used to put program files into the list for easy recalling.


### 13.1. Put the program into the list

1. Switch to teaching mode.
2. Click

3. Select the file intended to put and press Open


### 13.2. Select to execute

1. Switch to automatic mode
2. Click the program to be executed to make it a blue background 1108.tch

Run Select
3. Press $\qquad$ to execute the program.

Note: You can also use the binary value composed of I80~I84 to represent the selected program, and

|  |  | Del Select | 47 | / | 0 |  | Cycle | Run Select |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  | 08.tch | $\ldots$ |  |  | 10 |  | ... |  |
| 1 |  |  | ... |  |  | 11 |  | $\ldots$ |  |
| 2 |  |  | ... |  |  | 12 |  | ... |  |
| 3 |  |  | ... |  |  | 13 |  | ... |  |
| 4 |  | 3.tch | ... |  |  | 14 |  | $\ldots$ |  |
| 5 |  |  | ... |  |  | 15 |  | ... |  |
| 6 |  |  | ... |  |  | 16 |  | ... |  |
| 7 |  |  | ... |  |  | 17 |  | $\ldots$ |  |
| 8 |  | 4.tch | ... |  |  | 18 |  | ... |  |
| 9 |  |  | ... |  |  | 19 |  | $\ldots$ |  | then use I55 to start the program.

### 13.3. Appoint to execute

1. Switch to automatic mode

Run Reserv
2. Press to execute the appointed programs in order.
3. The appointed number represents the order number of execution, 0 means not scheduled, -1 means being executed, and >0 means the current order.
4. Press and hold the button of appointed number for a sufficient amount of time to perform the appointment, cancel the appointment, and if it is in progress, you can pause, and you can continue while paused.
5. Number of executions:


Represents the number of times the program has been executed, which can be cleared after pressed and released.

Note 1 : I730~I749 correspond to the buttons of 20 appointed numbers, respectively, and they operate in the same way.

Note 2 : O730~O749 corresponds to the status of appointment of the 20 sets of list program. It is always on when it is being appointed, flash when it is appointed, and off when it is not appointed.

## LNC

## 14. Composition of Program Modularization

The program page has multiple ways to call module files.

### 14.1. Calling program files

Call the program files that previously placed in the list page.


### 14.2. Calling $O$ files

Calling the O files exported by another program.


Note: The exported files are the most basic format, which can save the program files from being converted at runtime and the efficiency will be higher. The figure below is the content exported by the above program, which is the G code format of text.

| 1 | N1 |
| :--- | :--- |
| 2 | G1 L0 X64.309 Y969.058 Z274.585 A8.627 B9.868 C159.805 F20 K0 |
| 3 | N2 |
| 4 | G1 L0 X64.309 Y969.058 Z274.585 A8.627 B9.868 C159.805 F2O K0 |
| 5 | N3 |
| 6 | G1 S2 L0 X67.666 Y980.552 Z272.598 A46.830 B9.869 C165.798 F20 K0 DO |
| 7 | N4 |
| 8 | G1 S4 LO X63.734 Y988.323 Z269.585 A76.905 B9.867 C165.792 F2O KO |
| 9 | N5 |
| 10 | G1 L0 X65.819 Y1017.302 Z269.592 A76.903 B9.866 C165.795 F20 K0 |

### 14.3. Calling $G$ files

| BlockOP | Record | BasicCmo | ExtCmd | ProdAct |
| :---: | :---: | :---: | :---: | :---: |
| Mark | Jump | I Jump | R Jump |  |
| Wait I | Wait R | Set O | Set R |  |
| Delay | InPos |  | Call G |  |
| Skill | DynPos | WorldRec | JointRec |  |
| Coor | Cen | Pass | Fast |  |
|  | End | Mid | Line |  |




## LNC

Note：The incoming parameters when the exported G code cannot be connected to the calling of upper layer can be achieved to receive parameters by writing the G code and run according to the parameters．

| maker＿macro＿g | 20000 |
| :---: | :---: |
|  |  |
| 参数A（\＃1） |  |
| 参數B（\＃2） |  |
| 参数C（\＃3） |  |
| 参數D（\＃4） |  |
| 数P（\＃16） |  |
| 参數L（\＃12） |  |

G20000 A1 B2 C7 D9
$A \rightarrow$ \＃1
$B \rightarrow$ \＃
$C \rightarrow$ \＃3
D $\rightarrow$ \＃4
P $\rightarrow$ \＃16

```
G54 04TV
```



## 15.NC Editing

This page is suitable for short modifications to the program. If you need lots of writing, it is recommended to write at PC and then pass it to the controller.


### 15.1. Types of files

|  | ncfiles | G Macro | Ins Macro |
| :--- | :--- | :--- | :--- |
| Save <br> location | NCFiles Folder | Macro Folder | Macro Folder |
| Rules of <br> file names | Arbitrarily | maker_macro_g1000 | maker_func_ins_macro1000 |
| NC <br> executing <br> page | Name of Start files |  | Start No. |
| External <br> executing <br> mode | R17022~R17029=File <br> name <br> R23030=1 <br> C0=1 |  | R17004=1000 <br> C22=1 |

The O file also belongs to ncfiles, and its file name format is O plus four digits, for example O1234, which can be called with G65 P1234.
The G code format can be written as described in the last two sections.

### 15.2. Viewing and editing methods



## Record

Similar to the recording of the program page, put some commonly used instructions on the right side, move to the point, click the command button of Record, it can automatically bring in the code.


## 16. NC execution

This page can be used to run the machining path files (GM code) generated by CAM, or the files exported by the program page, or the files edited manually by the user. These files must conform to the G code format requirements of this robot system. For detailed G code and program syntax, please refer to the last two sections.


### 16.1. Runnable files

|  | Start file name (NC file) | Start number (insert file) |
| :---: | :---: | :---: |
| File folder | ncfiles | Macro |
| Format of file name | Arbitrarily | maker_func_ins_macro1000 |
| File selection | Click the File Name button and select the file. <br> DXF2NC_05ACVL.NC | Enter the number of the inserted file |
| Start button | Start Name | Start ID |

### 16.2. Viewing mode



Joint Manipulator - Software Operation Manual


## 17.Description of use of system $\mathbf{G}$ code

### 17.1. Fast moving (G0, G1T2), direct moveing (G1T4)

## Code description

L: 0 world, 1 work, 2 tools, 3 joints. (default: work)
M: 0 absolute, 1 relative. (Default: Absolute)
X: coordinate X or J 1 .
Y: coordinate Y or J2.
Z: coordinate Z or J3.
A: coordinate A or J4.
B: coordinate B or J5.
C: coordinate C or J 6 .
U : coordinate U
V: coordinate V
F:Speed
K: flexibility $0 \sim 5$
Note: When using T4, the set speed represents the space speed of the points. It is suitable to use CAD/CAM to convert the point path into small lines and directly specify the space speed between the two small lines.

## Examples

| G00 X100 Y100 Z10 A0 B0 C39 F4000 G1 T2 X100 Y100 Z10 A0 B0 C39 F4000 | Move to the position of the work coordinates ( $100,100,10,0,0,39$ ) at $4000 \mathrm{deg} / \mathrm{min}$ |
| :---: | :---: |
| G00 L0 X100 Y100 Z10 A0 B0 C39 F4000 G1 T2 L0 X100 Y100 Z10 A0 B0 C39 F4000 | Move to the position of the world coordinates $(100,100,10,0,0,39)$ at $4000 \mathrm{deg} / \mathrm{min}$ |
| G00 M1 X100 Y100 Z0 F4000 <br> G1 T2 M1 X100 Y100 Z0 F4000 | Move to a position relative to the current work coordinate $(100,100,0)$ at a speed of $4000 \mathrm{deg} / \mathrm{min}$ |
| $\begin{aligned} & \text { G00 L0 M1 X100 Y100 Z0 F4000 } \\ & \text { G1 T2 L0 M1 X100 Y100 Z0 F4000 } \end{aligned}$ | Move to a position relative to the current world coordinate $(100,100,0)$ at a speed of $4000 \mathrm{deg} / \mathrm{min}$ |
| G00 L2 M1 Z-20 F4000 G1 T2 L2 M1 Z-20 F4000 | At a speed of $4000 \mathrm{deg} / \mathrm{min}$, move to the position relative to the current tool |


|  | coordinate Z-axis-20 |
| :--- | :--- |
| G00 L3 X100 Y100 Z10 A0 B0 C39 F4000 |  |
| G1 T2 L3 X100 Y100 Z10 A0 B0 C39 F4000 | Move to the position of the joint <br> coordinates $(100,100,10, ~ 0, ~ 0, ~ 39) ~ a t ~$ <br> $4000 ~ d e g / m i n ~$ |
| G00 L4 X100 Y100 Z10 A0 B0 C39 F4000 <br> G1 T2 L4 X100 Y100 Z10 A0 B0 C39 F4000 | Move to the position of the motor <br> coordinates (100, 100, 10, 0, 0, 39) at <br> 4000 deg/min |

### 17.2. Path movement (G1, G1T5)

Code description

|  | Linear (S0) | Arc transition (S1) | Arc midpoint (S2) | Arc center (S3) | Arc end point (S4) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D |  |  | Attitude change mode: <br> 0: Three-point linear <br> 1: Two-point linear <br> 2: Three-point arc <br> 3: Two-point arc <br> 4: Fixed starting point <br> 5: Starting point AB <br> 6: Starting point ABC |  | Rotational direction <br> 0: Set by point (preset) <br> 2: Forced along the arc <br> 3: Forced reverse arc |
| R |  |  |  |  | Bypassed angle |
| O | Output point number |  |  |  |  |
| P | Start point distance |  |  |  |  |
| Q | End point distance |  |  |  |  |
| L | 0 world, 1 work, 2 tools, 3 joints. (default: work) |  |  |  |  |
| M | Absolute, 1 relative. (Default: Absolute) |  |  |  |  |
| X | Coordinate X or J1 |  |  |  |  |
| Y | Coordinate Y or J2 |  |  |  |  |
| Z | Coordinate Z or J3 |  |  |  |  |
| A | Coordinate A or J4 |  |  |  |  |
| B | Coordinate B or J5 |  |  |  |  |
| C | Coordinate C or J6 |  |  |  |  |
| U | Coordinate U |  |  |  |  |
| V | Coordinate V |  |  |  |  |

Joint Manipulator - Software Operation Manual

| W | Coordinate W |
| :--- | :--- |
| F | Speed |
| K | Flexibility $0 \sim 5$ |

Note: T5 is the default value of G1 command T code, so it's unnecessary to write. In addition, L1 work coordinate system and M0 absolute are also the default value. When the parameters are the same as them, it's unnecessary to write.

### 17.2.1. Linear (S0)

Use G1 T5 S0 to set, as S 0 is the default value, it's unnecessary to write.

| G1 X100 Y100 Z10 A0 B0 C39 F4000 | Move straight to the position of the work <br> coordinates $(100,100,10,0,0,39)$ at a <br> speed of $4000 \mathrm{~mm} / \mathrm{min}$ |
| :--- | :--- |
| G1 L0 X100 Y100 Z10 A0 B0 C39 F4000 | Move straight to the position of the world <br> coordinates $(100,100,10,0,0,39)$ at a <br> speed of 4000 mm/min |
| G1 M1 X100 Y100 Z0 F4000 | Move straight at a speed of 4000 $\mathrm{mm} /$ <br> min to the position relative to the current <br> work coordinates (100, 100, 0) |
| G1 L0 M1 X100 Y100 Z0 F4000 O201 P30 Q20 | Move straight at a speed of 4000 mm / <br> min to the position relative to the current <br> world coordinates (100, 100, 0) <br> Set O201 on at 30mm from the starting <br> point <br> Set O201 off when it is 20mm from the <br> target point. |
| G1 L2 M1 Z-20 F4000 | Move straight at a speed of 4000 mm/min <br> to a position relative to the current tool <br> coordinate Z-axis-20 |

### 17.2.2. Arc Transition (S1)

Use G1 T5 S1 to set the arc transition point.
The R code is the radius of the arc transition.

| G1 S1 X100 Y100 Z10 A0 B0 C39 R50 | The arc transfer to the position of the work <br> coordinates $(100,100,10,0,0,39)$ at a speed <br> of $4000 \mathrm{~mm} / \mathrm{min}$ |
| :--- | :--- |

### 17.2.3. Arc midpoint (S2)

Use G1 T5 S2 to set the points on the arc and G1 T5 S4 to set the end point of the arc.

## G1 S2 X100 Y90 Z80

Starting from the current position, the work coordinates $(100,90,80)$ are a point on the arc, and the work coordinates $(100,100,10)$ is the end point of the arc.

### 17.2.4. Arc Center (S3)

Use G1 T5 S3 to set the center of the arc and G1 T5 S4 to set the end point of the arc, and use D2, D3 to specify the clockwise arc or the counterclockwise arc.

G1 S3 X100 Y90 Z80
G1 S4 D2 X100 Y100 Z10 A0 B0 C39 F4000

Use work coordinate $(100,90,80)$ as the center of the arc, the work coordinate ( 100 , $100,10)$ as the end point of the arc to draw a clockwise arc, and the attitude at the end of the arc is $(0,0,39)$.

### 17.2.5. Arc End Point (S4)

Use G1 T5 S2 to set the point on the arc, and G1 T5 S4 to set the end point of the arc.

G1 S2 X100 Y90 Z80
G1 S4 X100 Y100 Z10 A0 B0 C39 F4000

Starting from the current position, the work coordinates $(100,90,80)$ are a point on the arc, and the work coordinates $(100,100,10)$ are the end point of the arc.

### 17.3. Clockwise arc and counterclockwise arc (G2, G3)

## Code description

L: 0 world, 1 work, 2 tools, 3 joints. (default: work)
M: 0 absolute, 1 relative. (Default: Absolute)
I: center relative position X
J : center relative position Y
K : center relative position Z
X: coordinate X or J1.
Y: coordinate Y or J2.
Z: coordinate Z or J3.
A: coordinate A or J4.
B: coordinate B or J5.
C: coordinate C or J 6 .

R: Bypassed angle
U: coordinate U
V: coordinate V
F:speed
K:Flexibility 0~5

## Examples

| G2 I100 J90 K80 X100 Y100 Z10 A0 B0 C39 <br> F4000 | Use relative work coordinates $(100, ~ 90, ~ 80)$ <br> are the center, the work coordinates $(100,100$, <br> $10)$ are the end point of the arc to draw a <br> clockwise arc, and the attitude at the end of <br> the arc is $(0,0,39)$. |
| :--- | :--- |

### 17.4. Wait (G4)

## Code description

X : waiting seconds
P : Waiting milliseconds

## Examples

G4 X1 P200 Waiting for 1200 milliseconds

### 17.5. Switch tool parameters (G5)

## Code description

L: The tool parameter group is $0 \sim 3$. If not specified, the direct setting value of XYZABC is used.
X: Tool parameter X
Y: Tool parameter Y
Z: Tool parameter Z
A: Tool parameter A
B: Tool parameter B
C: Tool parameter C

## Examples

| G5 L1 | Switch to tool parameters of group 1 |
| :--- | :--- |

### 17.6. Switch coordinate inversion mode (G6)

## Code description

A: 0 does not use the work coordinate inversion mode, 1 uses the work coordinate inversion mode

## Examples

G6 A1 Use work coordinate inversion mode

### 17.7. Set the path process (G7)

Code description

| E | 0 Stop | 1 Regular style | 2 Linear follow |
| :---: | :---: | :---: | :---: |
| L |  | Process coordinate system <br> 0 World coordinates , <br> 1 Work coordinate, <br> 2 Tool coordinate , <br> 3 Path X+ Tool Z , <br> 4 Path X+ Work Z , <br> 5 Path X+ World Z |  |
| Q |  | Style category <br> 0 Round <br> 1 Front and rear <br> 2 Left and right |  |
| X |  | Moving range | X speed R number |
| Y |  | Paragraph distance | Y speed R number |
| Z |  | Initial movement | Z speed R number |

## Examples

| G7 E0 | Disable path process |
| :--- | :--- |
| G7 E1 L0 Q0 X10 Y8 Z0 | Use regular pattern process, world coordinate system, circling <br> mode, circling radius of 10mm, make a circle every 8mm's <br> walk with no initial movement |


| G7 E2 L1 X100 Y0 Z0 | Use the linear following process and work coordinate system, <br> read the speed value in the X direction from R100 |
| :--- | :--- |

### 17.8. Wait for arrival of interrupt counting (G8)

## Code description

A: Interrupt counting value

## Examples

| G8 A1234567 | Wait for the interrupted counting value to reach <br> 1234567 and then continue to run |
| :--- | :--- |

### 17.9. Wait correct arrival (G9)

## Code description

A: Range value of correct arrival

## Examples

G9 A20 $\quad$| Continue to run when waiting for the servo of each axis |
| :--- |
| behinds the total value for less than 20. |

### 17.10. Joint Record Movement (G10)

## Code description

P: Record number 0~99
M: If XYZABC has a value, its value should be 0 replace or 1 offset to the original recorded value.

XYZABC : Substitute or offset value
F:speed
T: action mode, 2 fast, 5 path. The default value is 2 .
S: For T5, point type 0 line, 1 arc transition, 2 arc midpoint, 3 arc center, 4 arc end point

## Examples

| G10 P2 F1000 | Move quickly to the "joint record" position of <br> number 2 at 10,000 deg / min. |
| :--- | :--- |
| G10 P2 T5 F1000 | Move linear to the "joint record" position of |

$\square$

### 17.11. World record movement (G11)

## Code description

P: Record number 0~99
M: If XYZABC has a value, its value should be 0 replace or 1 offset to the original recorded value.

XYZABC : Substitute or offset value
F:speed
T: action mode, 2 fast, 5 path. The default value is 2 .
S: For T5, point type 0 line, 1 arc transition, 2 arc midpoint, 3 arc center, 4 arc end point

## Examples

| G11 P67 F2000 | Move linear at a speed of $20,000 \mathrm{~mm} / \mathrm{min}$ to <br> the "World record" position of number 67. |
| :--- | :--- |
| G11 P67 T2 F2000 | Move quickly at a speed of $20,000 \mathrm{~mm} / \mathrm{min}$ to <br> the "World record" position of number 67. |

### 17.12. Set whether the command of the axis output (G13)

## Code description

A: Axis number 1~9
B: 0 output, 1 no output

## Examples

G13 A7 B1 Set stop command output to the 7th axis (U axis)

Note: Special attention will be required to use this instruction, do not use it unless you are clear about the purpose. When use is resumed, you need to call G95 to re-update the coordinates.

### 17.13. Get the world coordinates (G17, G1T17) of the final position

## Examples

| G17 | Get the world coordinates of the final position and the return <br> value is @71~@79 |
| :--- | :--- |
| G1T17 | Get the world coordinates of the final position and the return |


|  | value is \#71~\#79 |
| :--- | :--- |

### 17.14. Get the work coordinate(G18, G1T18) of the final position

Examples

| G18 | Get the work coordinates of the final position and the return <br> value is @71~@79 |
| :--- | :--- |
| G1T18 | Get the work coordinates of the final position and the return <br> value is \#81~\#89 |

### 17.15. Get the joint coordinates (G19, G1T19) of the final position

Examples

| G19 | Get the joint coordinates of the final position and the return <br> value is @81~@89 |
| :--- | :--- |
| G1T19 | Get the joint coordinates of the final position and the return <br> -value is \#91~\#99 |

### 17.16. Wait for Point I(G20)

## Code description

I : Number of point I
S : Comparison value (waiting value)
T : Waiting time
F : Failure processing mode 0 continue to wait 1 skip this line 2 alarm
A: Alarm number
B : Alarm bit

## Examples

| G20 I100 S1 | Wait for I100 to become 1. |
| :--- | :--- |
| G20 I110 S0 T1000 F1 | Wait for I110 to become 0. If the waiting time exceeds <br> 1000 ms , skip this line. |
| G20 I120 S1 T2000 F2 A29010 B3 | Wait for I120 to become 1, and if the waiting time <br> exceeds 2000ms, an alarm of alarm R29010.3 is issued. |

### 17.17. Wait for $R$ value ( $\mathbf{G} 21$ )

## Code description

R : R value number
C : Comparison mode 0 equal, 1 unequal
M : Mode, 0 constant, 1R value
V : Comparison value (waiting value)
T : Waiting time
F : Failure processing mode 0 continue to wait 1 skip this line 2 alarm
A: Alarm number
B : Alarm bit

## Examples

| G21 R100 V1 | Wait for R100 to become 1. |
| :--- | :--- |
| G21 R110 V0 T1000 F1 | Wait for R110 to become 0. If the waiting time <br> exceeds 1000 ms , skip this line. |
| G21 R110 M1 V99 T1000 F1 | Wait for R110 to become equal to R99. If the <br> waiting time exceeds 1000ms, skip this line. |
| G21 R110 M1 V99 C1 T1000 F1 | Wait for R110 to become unequal to R99. If the <br> waiting time exceeds 1000ms, skip this line. |
| G21 R120 V1 T2000 F2 A29010 B3 | Wait for R120 to become 1, and if the waiting <br> time exceeds 2000ms, an alarm of alarm <br> R29010.3 is issued. |

### 17.18. Set $O$ (G22)

## Code description

O: output point number
S: output point status
P : Waiting time, ms

## Examples

| G22 O201 S0 P200 | After setting O201 to Off, pause for 200ms. |
| :--- | :--- |
| G22 O203 S1 | Set O203 to On |
| G22 O205 S2 | Switch the status of O205 |
| G22 O205 S3 P100 | Set O205 to on 100ms, then Off (the program will wait for <br> off before continuing). |
| G22 O205 S4 P100 | Set O205 to on 100ms, then On (the program will wait for |

Joint Manipulator - Software Operation Manual

|  | on before continuing). |
| :--- | :--- |
| G22 O205 S5 P100 | Set O205 to on, the program continues to run (using the <br> first set of auto off, after 100ms, the background program <br> will automatically turn it off). |
| G22 O205 S6 P100 | Set O205 to on, the program continues to run (using the <br> second set of auto off, after 100ms, the background <br> program will automatically turn it off). |
| G22 O205 S7P100 | Set O205 to on, the program continues to run (using the <br> third set of auto off, after 100ms, the background program <br> will automatically turn it off). |
| G22 O205 S8 P100 | Set O205 to on, the program continues to run (using the <br> fourth set of auto off, after 100ms, the background program <br> will automatically turn it off). |

### 17.19. Set $R(G 23)$

## Code description

R : the number of R
T: Numerical type ( 0 absolute, 1 relative, 2 number, 3 cycles plus 1 )
S: Output point status
P : Waiting time , ms

## Examples

| G23 R2010 T0 V3 P200 | Set R2010 to 3, then pause for 200ms. |
| :--- | :--- |
| G23 R2011 T1 V2 | R2011 $=$ R2011 +2 |
| G23 R2012 T2 V2060 | R2012 $=$ R2060 |
| G23 R2013 T3 V10 | R2013 $=$ R2013 + , if R2013 $>10$, then set R2013 $=0$ |

### 17.20. Sensing point I stop (Rbit comparison) (G31)

## Code description

R : the number of R
S : The value of the R number to be used for the shielding value of the And operation. For example, when only the bit 0 of the R value is monitored, S 1 is used. When only the bit 1 of the $R$ value is used, $S 2$ is used. When bit 0 and bit 1 are simultaneously monitored, $S 3$ is used. T: The value after the And operation must be the same as the value of this code to trigger the action to stop.

L： 0 world， 1 work， 2 tool， 3 joint．（default：work）
M： 0 absolute， 1 relative．（Default：Absolute）
X：Coordinate X or J1．
Y：Coordinate Y or J2。

Z：Coordinate Z or J3。

A：Coordinate A or J4。

B：Coordinate B or J5。

C：Coordinate C or J6。
U：Coordinate U
V：Coordinate V
F：Speed

## Examples

| G31 M1 Z－100 F3000 R4000 S1 |
| :--- | :--- |
| T1 |$\quad$| Decrease by 100 mm at a speed of 3000．If R4000．0＝1 |
| :--- |
| during the decrease，the unfinished action of this |
| command is ignored． |

Note：In the system built－in PLC program，I70～I73 will be corresponding to R23730，and the I point to trigger stop can be set to this number to facilitate the use of this function．

## 17．21．Sensing torque stop（ $R$ value comparison）（G32）

## Code description

R：the number of R
S：Compare conditions． 0 greater than， 1 greater than or equal to， 2 equal to， 3 less than， 4 less than or equal to， 5 not equal to 6,6 absolute value greater than，and 7 absolute value less than． T ：The value being compared．
L： 0 world， 1 work， 2 tool， 3 joint．（default：work）
M： 0 absolute， 1 relative．（Default：Absolute）

X ：Coordinate X or J ．

Y：Coordinate Y or J2。

Z：Coordinate Z or J3。

A：Coordinate A or J4。

B：Coordinate B or J5。

C：Coordinate C or J6。
U ：Coordinate U
V：Coordinate V
F：Speed

Examples

| G32 M1 Z－100 F3000 R4000 S1 <br> T1 | Decrease by 100 mm at a speed of 3000 ．If R4000 is <br> greater than or equal to 1，during the descent，the <br> unfinished action of this command is ignored and is no <br> longer executed． |
| :--- | :--- |
| G32 Z－100 F3000 R4000 S3 T3 | At a speed of 3000 ，the Z axis is moved to the position <br> of the work coordinate－100 mm．During the descent <br> process，if the R4000 is less than 3，the unfinished action <br> of this instruction is ignored and is no longer executed． |

Note：This function can be used to determine to stop the action after the torque of an axis after reaching the value．The torque value can be read by $\mathbf{R 2 5 0 0 9 6}$～．

## 17．22．Coordinate system re－offset（G52）

## Code description

X：Coordinate X or J1．
Y：Coordinate Y or J2。

Z：Coordinate Z or J3。

A：Coordinate A or J4。

B: Coordinate B or J5。

C: Coordinate C or J6。

## Examples

G52 X20Y10 C5
Re-offset the current coordinate system to the position of the work coordinate X20 Y10 and rotate it 5 degrees

Note: When matching with the visual system, it is necessary to perform re-offset on the coordinate system according to the feedback value of the visual system. This command can achieve requirement of this function.

### 17.23. Set the work coordinate system (G54)

17.23.1. The offset of position and attitude specified directly by $\mathbf{O 0}$ (preset)

| G54 X0 Y100 Z300 A0 B0 C0 | Set $(0,100,300)$ to the origin of the work <br> coordinate system <br> No rotation and tilting |
| :--- | :--- |
| G54 X20 Y100 Z300 A0 B0 C30 | Set $(20,100,300)$ to the origin of the work <br> coordinate system <br> Rotate 30 degrees horizontally |
| G54 X20 Y100 Z300 A0 B10 C30 | Set $(20,100,300)$ to the origin of the work <br> coordinate system <br> The attitude of coordinate system is $(0,10$, <br> $30)$ |

17.23.2. $O 1$ uses position $X Y Z$ in the world record

| G54 O1 P8 | The XYZ of world record No. 8 (P8) is used <br> as the work coordinate system. No rotation <br> and tilting. |
| :--- | :--- |

17.23.3. O 2 uses position and attitude XYZABC in world records

| G54 O2 P6 | XYZABC of world record No. 6 (P6) is used <br> as the work coordinate system. |
| :--- | :--- |

17.23.4. O3 uses coordinate system records

| G54 O3 P8 | Use the coordinate system record No. 8. |
| :--- | :--- |

### 17.23.5. O4 uses the current position and attitude

| G54 O4 | Use the coordinate XYZABC of the program <br> at the time as work coordinate system. |
| :--- | :--- |

17.23.6. O5 uses dynamic position

| G54 O5 X100 Y101 Z102 A103 B104 C105 | The value of R100~R105 is read to set the <br> work coordinate system. |
| :--- | :--- |

### 17.23.7. O 6 uses joint records

| G54 O6 P3 | The work coordinate system is set using the <br> value of the world coordinates corresponding <br> to the third set of joint records. |
| :--- | :--- |

### 17.23.8. O7 directly set joint coordinates

| G54 O7 X0 Y0 Z-90 A0 B-90 C30 | Set the world coordinates of J1~J6= <br> $(0,0,-90,0,-90,30)$ as work coordinate system |
| :--- | :--- |

17.23.9. O8 directly set re-offset

| G54 O8 X0 Y10 C20 | Set the world position of the work coordinate <br> G52 X0 Y10 C20 |
| :--- | :--- |
| XYZABC $(0,10,0,0,0,20)$ to work coordinate |  |
| system |  |

### 17.23.10. O9 re-offset dynamic setting

| G54 O9 X100 Y101 C102 | The world position corresponding to the work <br> coordinate of the values of R100, R101, and <br> R102 is the work coordinate system. |
| :--- | :--- |

### 17.24. Rotating the coordinate system (G55)

## Code description

P : the group of rotating coordinate system.

## Examples

G55 P0 $\quad$ Use 0 set of rotating coordinate system

### 17.25. Coordinated coordinate system (G56)

Code description
P : the group of rotating coordinate system.

## Examples

| G56 P0 | Use 0 set of coordinated coordinate system |
| :--- | :--- |

### 17.26. Bulk separating axis coordinate system (G57)

## Code description

P: Set of bulk separating axis coordinate system.

## Examples

G57 P0
Use 0 set of bulk separating axis coordinate system.

### 17.27. Start dynamic compensation (G61)

Examples
G61
Close dynamic compensation

### 17.28. Turn off dynamic compensation (G60)

Examples
G60
Start dynamic compensation

### 17.29. Interpolation table conversion (G69)

## Code description

T: Interpolation table set 0~9.
X : The first comparison value.
A: The second comparison value.

Examples
G69 X100 A203
Call the interpolation table to convert with the input values of 100 and 203, and the converted return value will be placed at @ 25 , @2

### 17.30. Set the flexibility level (G89)

## Code description

A: The flexibility level set is $0 \sim 5$.

## Examples

| G89 A0 | Use the default flexibility level |
| :--- | :--- |
| G89 A2 | Use the Group 2 of set flexibility level. |

### 17.31. Set the synthetic acceleration/deceleration time (G90)

## Code description

A: Synthetic linear acceleration and deceleration time. (blank means using default values)

B: Synthetic bell acceleration and deceleration time. (blank means using default values)

## Examples

| G90 A300 B100 | Set the synthetic linear acceleration/deceleration time to <br> 300 and the bell time to 100. |
| :--- | :--- |

### 17.32. Set the shaft speed smoothing time (G91)

## Code description

A: The shaft speed smoothing linear time. (blank means using default values)
B: The shaft speed smoothing bell time. (blank means using default values)

## Examples

G91 A100 B50

Set the shaft speed smoothing linear time to 100 and the bell time to 50 .

### 17.33. Set the shaft speed tolerance (G92)

## Code description

A: Axis number 1~9.
B: Allowable difference. (blank means using default values)

## Examples

G92 A3 B100 $\quad$ Set the tolerance of the 3rd axis to 100.

### 17.34. Serve lag eliminates and updates coordinates (G95)

Examples

| G95 | Eliminate servo lag and update coordinates |
| :--- | :--- |

### 17.35. Update coordinates (G96)

## Examples

G96 $\quad$ Update coordinates

## 18. Macro syntax

### 18.1. Variables

### 18.1.1. Regional variables:

Each file has 200 local variables, floating point numbers:
\#0 : represents a null value, which can be read to determine whether other variables are null and cannot be written.
\#1~\#26 : If the file is not the top layer directly called by system, the 26 variables correspond to the 26 letters of A~Z. When called, the various codes in the calling command of the previous layer are brought into the corresponding variables of this file, and can also be used in subsequent program lines.
\#27~\#199: The intended use can be defined by the user.

### 18.1.2. Global Variables:

When the program is running, there are 1000 global variables available with floating point number:
@ 0 : represents a null value, which can be used to read whether other variables are null and cannot be written.
@ 1~@999: The intended use can be defined by the user.

Global variables can be accessed across files, so they can be used as a conduit for interworking between different files.

### 18.2. Core resource IOCSAR access

The following table is a list of all resources and access functions in the joint manipulator system.
$\left.\begin{array}{|l|l|l|l|l|l|}\hline \text { Rsources } & \text { Quantity } & \begin{array}{l}\text { R read, W write } \\ \text { (interpretation } \\ \text { execute } \\ \text { immediately) }\end{array} & \begin{array}{ll}\text { R read, W write } & \text { Handed over } \\ \text { (Interpretation } \\ \text { waits for the } \\ \text { core to the core for } \\ \text { complete } \\ \text { simultaneous } \\ \text { before } \\ \text { executing) }\end{array} & \text { Description }\end{array}\right]$

| O (Output) | 1000 | R_MLC_O_F <br> W_MLC_O_F | R_MLC_O <br> W_MLC_O |  | set the hardware <br> point of the actual <br> output through the <br> IO comparison <br> table |
| :--- | :--- | :--- | :--- | :--- | :--- |
| C (Control) | 4096 | R_MLC_C_F <br> W_MLC_C_F | R_MLC_C <br> W_MLC_C |  |  |
| S (Status) | 4096 | R_MLC_S_F | R_MLC_S |  |  |
| A (Aid) | 4096 | R_MLC_A_F <br> W_MLC_A_F | R_MLC_A <br> W_MLC_A |  |  |
| R (Register) | $6,000,000$ | R_REG_F <br> W_REG_F | R_REG | W_REG | WEG_AT |


| \#32 = R_MLC_I(206) | Read the contents of I206 into the local variable 32 |
| :--- | :--- |
| W_MLC_O $(123,1)$ | Set O123 to On |
| W_MLC_C $(9,1)$ | Set C9 to On $\rightarrow$ Start handwheel mode |
| \#33 = R_MLC_S(9) | Read the contents of S9 into the local variable 33 $\rightarrow$ Check if <br> it is currently in handwheel mode |
| \#34 = R_MLC_A(2000) | Read the contents of A2000 to local variable 34 |
| W_MLC_A(2000, 1) | Set A2000 to On |
| \#35 = R_REG(1200) | Read the contents of R1200 into local variable 35 |
| W_REG(1200, 3434) | After waiting for the motion instruction, set the content of <br> R1200 to 3434. |
| W_REG_F(1200, 3434) | The content of the R1200 will be set to 3434 immediately. |
| W_REG_AT(1200, 3434) | Assign this instruction that sets the content of R1200 to 3434 <br> to a motion core, and this instruction is executed <br> synchronously when the motion core is executed. (Avoid <br> causing motion pauses) |

### 18.3. Mathematical fnctions

The following table is the mathematical functions supported in the joint manipulator system.

| Mathematical function | Description |
| :--- | :--- |
| SIN(DEG) | SIN function |
| COS(DEG) | COS function |


| TAN(DEG) | TAN function |
| :--- | :--- |
| ASIN(VALUE) | ASIN function |
| ACOS(VALUE) | ACOS function |
| ATAN(VALUE1, VALUE2) | ATAN function |
| SQRT(VALUE) | Obtain root mean square value |
| ABS(VALUE) | Obtain absolute value |
| ROUND(VALUE) | Obtain rounded value |
| FIX(VALUE) | Drop unconditionally |
| MOD(VALUE, VALUE2) | Obtain the remaining value |

### 18.4. Program flow control

The following table is the supported program flow control syntax in the joint manipulator system.

| Process control command | IF $\sim$ GOTO |
| :--- | :--- |
| Select narrative | IF ...ELSE |
| Select narrative | SELECT |
| Cycle | FOR ... END_FOR, EXIT_FOR |
| Cycle | DO ...UNTIL, EXIT_DO |
| Calling function | CALL_SUB, EXIT_SUB |

